
CALM Assembler PUBBL

CALM
Common Assembly Language for Microprocessors

Peculiarities and Advantages

(c) Copyright Mai 1994
Patrick Fäh, La Colombière, CH-1783 Pensier, Suisse

CALM Assembler PUBBL

Table des matières
What is CALM ?..3
What defines CALM ?..3
What are the advantages for the user ?...3
what are the disadvantages ?...3
Examples...4
The CALM assembler consists of several programs and files:................6

The assembly programs..6
Object code without linker..7
Object code in the MUFOM format...7
Processor documentation...7
CALM reference card...8
Utility of a CALM reference card...8
Structure of a CALM reference card...8
Example of a CALM reference card..8

CALM Assembler PUBBL

What is CALM ?
CALM is the abbreviation for Common Assembly Language forMicroprocessors. CALM is not a
new programming language, but anotherconsistent, processor independant notation of assembly
instructions.Nowadays each manufacturer defines a specific assembly language forhis
microprocessor. Also the used terminology depends very much on themicroprocessor. What is still
missing today is a consistent notationfor those instructions which are 100% identical.
CALM takes advantage of the fact, that many instructions - even ondifferent microprocessors -
execute the same operation. Isn't itobvious in these cases to choose the same notation,
independantly ofthe processor?

What defines CALM ?
CALM defines a consistent and processor independant syntax forinstructions and pseudo-
instructions. Past experience and tests onover 20 microprocessors have shown that nearly all
instructions of amicroprocessor could be expressed by the instructions and thenotation, which
have been defined by CALM.
But CALM defines also a consistent assembly terminology. Also aconcept is presented, which
shows, how an instruction is assembled.The user understands why an instruction in CALM has the
givennotation. In addition a consistent notation is defined for operationcodes, addressing modes,
address and data specifiers, condition codesand much more.
CALM proposes a unique notation of the instructions for all(micro)processors. CALM fulfills this
goal in about 95% of theinstructions for a microprocessor. The remaining 5% representprocessor
specific singularities, which could not be covered by acommon assembly language. But in many
cases it is favorable, that justthese singularities are also distinguished by a different notation.

What are the advantages for the user ?
A common notation of the instructions and especially of theaddressing modes gives an objective
view of the features of amicroprocessor. Therefore objective comparisons
betweenmicroprocessors are also possible.
For the first time programmers of different microprocessors cancommunicate together. Up until
now they failed because of thedifferent notation.
The changes of processors are also much easier, since the notationof the instructions does not
change. Only the general architecture andsome singularities of the new processor must be
learned.
CALM is not only appropriate for microprocessors, but also formini- processors, mainframes and
microprogrammed units. CALM isextensible and for that not only limited to 8, 16 and 32
bitprocessors.And

what are the disadvantages ?
CALM defines only the software part of a processor. If one needsany hardware information
(execution time, instruction code, pinconfiguration, electrical characteristics, information for
theimplemented functions like timers, DMA-units, etc.), then thedocumentation of the manufacturer
is necessary. Hence the user mustoccasionally know both notations of the instructions: the one of
CALMand the one of the manufacturer.

CALM Assembler PUBBL

Examples
The following page compares the notation of the instructions inCALM to one of the manufacturers
for the microprocessors 8080, iAPX86and 68000.
 ; i8080: multiplication: RESULTAT.16 = MUL1.8 * MUL2.8

; modifie: A, B, D, E, H, L, F

MULT: MULT:
MOVE MUL1,A LDA MUL1
MOVE A,E MOV E,A
MOVE #0,D MVI D,0
MOVE MUL2,A LDA MUL2
MOVE #0,HL LXI H,0
MOVE #8,B MVI B,8

BOUCLE$: BOUCLE:
ADD HL,HL DAD H
RLC A RAL
JUMP,CC SUITE$ JNC SUITE
ADD DE,HL DAD D

SUITE$: SUITE:
DEC B DCR B
JUMP,NE BOUCLE$ JNZ BOUCLE
MOVE HL,RESULTAT SHLD RESULTAT

RET RET

CALM Assembler PUBBL

; iAPX86: traduit une chaîne de caractères EBCDIC en codes ASCII
; (<CR> termine); supposition: ES = DS, [DS] est équivalent à
; {DS}*16; modifie: AL, BX, CX, DI, SI, F

EBCDIC_ASCII: EBCDIC_ASCII: PROC NEAR
MOVE.16 #CONV_TAB,BX MOV BX,OFFSET CONV_TAB
MOVE.16 #EBCDIC_CARACT,SI MOV SI,OFFSET EBCDIC_CARACT
MOVE.16 #ASCII_CARACT,DI MOV DI,OFFSET ASCII_CARACT
MOVE.16 [DS]+ASCII_LONGUEUR,CX MOV CX,SIZE ASCII_LONGUEUR
AUTOINC CLD

BOUCLE$: BOUCLE:
MOVE.8 [DS]+{SI!},AL LODS EBCDIC_CARACT
MOVE.8 [DS]+{BX}+{AL},AL XLAT CONV_TAB
MOVE.8 AL,[ES]+{DI!} STOS ASCII_CARACT
COMP.8 #16'D,AL CMP AL,0DH
LOOP,NE BOUCLE$ LOOPNE BOUCLE
RET.16 RET ; EQ: CR trouvé

; 68000: division: D4 = D5D4 / D3, reste dans D5, CS si erreur

DIV64: DIV64 ; modifie: D3, D4, D5, F
TEST.32 TST.L D3
JUMP,ZS R8^DIV_ZERO$ BEQ.S ZERO
PUSH.32 D0 MOVE.L D0,-(A7)
MOVE.32 #32-1,D0 MOVEQ #32-1,D0

DIV BOUCLE$: BOUCLE
SETX ORI #$10,CCR
RLX.32 D4 ROLX.L D4
RLX.32 D5 ROLX.L D5
JUMP,CS R8^DIV_DEPASSEMENT$ BCS.S DEPASSEMENT
SUB.32 D3,D5 SUB.L D3,D5
JUMP,HS R8^DIV_OK$ BCC.S OK
ADD.32 D3,D5 ADD.L D3,D5
TCLR.32 D4:#0 BCLR #0,D4

DIV_OK$: OK
DJ.16,NMO D0,DIV_BOUCLE$ DBRA D0,BOUCLE
POP.32 D0 MOVE.L (A7)+,D0
CLRC ANDI #$FE,CCR
RET RTS

DIV_DEPASSEMENT$ DEPASSEMENT
POP.32 D0 MOVE.L (A7)+,D0

DIV_ZERO$: ZERO
SETC ORI #$1,CCR
RET RTS

CALM Assembler PUBBL

The CALM assembler consists of several programs and files:

The assembly programs
ASCALM: The real assembler. It works like all other traditionalassemblers. The only difference:
The programs must be written in theproducer independent assembly language CALM. Advantage:
This assemblylanguage does not differ from one processor to another. With thecorresponding
modules, the assembler generates machine code withoutlinker for nearly all microprocessors (see
price list).
Assemblerfeatures: labels (32 significant characters), local labels, expressionwith 32 bit precision,
conditional assembly (.IF/.ELSE/.ENDIF),conditional listing (.LIST/.ENDLIST), inserting of files of
any size(.INS), actual system time and date can be accessed by constants,inserting error
messages (language selectable) directly in the sourcefile, cross reference generator, macros, and
much more.
Macrofeatures: up to eight parameters and a data specifier may be specifiedin a macro call. The
length of a parameter is only limited by theinput line length. Parameters may be predefined. In a
macro call, onecan distinguish if any passed parameters have been predefined or havebeen
defined at the macro call. Macros may call other macros (allowednested level: 10). In addition, the
passed parameters can be analyzedby built-in functions (compare, copy, test characters, etc.).
Withthese functions, powerful macros may be written (i.e. translate theinstructions from the
producer notation to the CALM notation). Machinecode output format: MUFOM (refer to MUFBIN).
MUFBIN: Converts the object files from the MUFOM format to theformats: binary (.BIN/.COM),
hex, Intel hex (.HEX), Motorola S format(.FRS), PC/MS-DOS (.EXE) and Atari ST
(.TOS/.TTP/.PRG).
Debugger: Debugger for 8086 (DBGCALM, PC/MS-DOS) or 68000 (DEBUG68,Atari ST/Smaky
100). With disassembler (CALM notation).
The utility programs

CALMMENU presents a simple menu.
FORMCALM formats a CALM assembly source file.
LSTTOASM transforms a listing to a source file.
PFED a program editor (with macros!).
PROCSET changes in *.PRO modules the default value.
SPACETAB replaces the spaces by tabulators in any source file.
TABSPACE replaces the tabulators by spaces in any source file.
TESTLIST verifies a listing file.

The files for a processor
*.DOK CALM reference card for the processor *, i.e., Z80.DOK.
*.PRO the module for the processor *, i.e., Z80.PRO.
B*.TXT description of the processor module, i.e. BZ80.TXT.
C*.TXT instruction comparison (producer notation -> CALM notation).
D*.EXE disassembler CALM for the processor *, i.e. DZ80.EXE.
I*.TXT list of machine codes with the CALM notation (disassembling).
ST*.ASM list of instructions in the CALM notation (sorted alphabetically).
S_*.ASM program examples (or E*.ASM or *.ASM).
T*.ASM test file (list of instructions).
xxx_CALM translator (producer notation -> CALM)
CALM_xxx translator (CALM -> producer notation)

Note: for some processors, not all files above are available.

CALM Assembler PUBBL

Object code without linker
The CALM assembler generates object files without a linker in theso-called MUFOM format. This
allows the user to directly obtain anexecutable program after the transformation of the MUFOM
format to thebinary format.
This is sufficient in many cases. The combination assembler-linker,which generates relocatable
object modules and links them, very oftenneeds much more time than an assembler, which
assembles each time thewhole source and directly generates the machine code. However,
someefficient hardware is required for this (like hard disks and emulateddisks in memory).
The type of programming depends on the requirements. The programsfor simple 8 bit
microprocessors (like 6502, 6800, 8080, Z80) andsingle-chip microcomputers are relatively small.
Furthermore, theseprocessors are based on operating systems which load and start theuser
program always at the same address.
The requirements for more efficient microprocessors (like 6809,iAPX86, 68000, NS32000) and
operating systems are higher: the programsmust be loaded and executed at any memory address
and the programsmust be separated in program, data and stack segments. Bothrequirements can
be satisfied without problems, as these processorshave the needed addressing modes (relative
addressing, indirectaddressing with any offset value, etc.).
The programmer can choose the desired addressing mode in the CALMassembler. If he wants to
generate position independant programs(which can be loaded and executed at any address
without relocation),then he should only use relative addressing. He can access the dataand stack
segments only with the indirect addressing. The reward forthese limitations: the generated objects
can be loaded and executed atany memory address without complicated and time-consuming
relocation.
One has also to bear in mind that the programming field haschanged. Nobody today addresses
more than one MByte of memory spacefor the program and the data with absolute addressing.
Therefore this programming concept requires a certain disciplinefrom the programmer as he can
no longer use all addressing modes. Whenthe programmer does not have this discipline, an
assembler with alinker is necessary.

Object code in the MUFOM format
The CALM assembler generates an object in the so-called MUFOMformat. This format has some
advantages when compared to the formats.HEX (Intel) and S format (Motorola): In addition to
thecharacteristics of the two "standard" formats like checksum, dataaddresses, start address,
ASCII codes, alterable by an editor, etc.,the following information is given: version of the assembler
and theprocessor description, indications of the processor architecture, andthe character strings of
the pseudo-instructions .TITLE and .CHAPappear also in this format. All this information is
uncoded (ASCIIcodes) and therefore can be read by the operation system command TYPE.
In addition, the MUFOM format is also usable for linkable objects.The MUFOM format is processor
independant. Actually, the CALMassembler uses only the MUFOM commands for non-linkable
objects.

Processor documentation
The delivered CALM documentation is normally not enough tounderstand a processor in all its
details. This is particularly truefor microprocessors and single-chip microcomputers with built-
infunctions like RAM, DMA and I/O. Hence, the correspondingdocumentation of the producer for
the concerned processor is at leastnecessary. Therefore, the CALM documentation also contains
comparisonlists, for example producer notation to CALM notation.

CALM Assembler PUBBL

CALM reference card
On a CALM reference card, all the instructions of a microprocessorare clearly arranged in the
producer independent assembler notationCALM. The benefit of this card is to give an overview.

Utility of a CALM reference card
CALM reference cards are primarily useful in daily programmingwork: Which addressing modes
are allowed with AND? Which flags aremodified with COMP? etc.

But even if you have no interest for the CALM assembler, a CALMreference card may be
useful to you: For example, if:
you want to better understand your own microprocessor with a
different notation
you want to obtain a producer independent description of all
instructions of a microprocessor
you want to compare microprocessors and want to be independant
of producer informations
you look for a new, better microprocessor
you need to rate the performance of a microprocessor
you would like to indicate if a microprocessor has a specific
instruction/operation code/addressing mode/data type
you want to get to know CALM first

Structure of a CALM reference card
All CALM reference cards are arranged in the same way. On the oneside, this gives an
homogeneous appearance and, on the other side,direct comparisons are possible.
In addition, the operation codes of the producer are given with theCALM operation codes.Extent of
supply of a CALM reference card documentation

CALM reference card documentation consists of:
CALM reference card
 comparison producer notation -> CALM notation of the
 instructions
 an example (in CALM and producer notation)
 alphabetically sorted list of all operation codes (CALM notation)
 alphabetically sorted list of all instruction codes with the
 correspondent instructions in the CALM notation

Example of a CALM reference card
The CALM reference card of the microprocessor 8080/5 is presentedin the following pages.

CALM Assembler PUBBL

 8080/8085 - 1
 8080/8085
 CALM REFERENCE CARD

 8080/8085 Description

 Programming Model
 15 8 7 0

 A [accumulator | N . Z . x . H . 0 . P . v . C] F

 B [|] C

 D [|] E

 H [|] L

 15 0

 [stack pointer] SP

 [program counter] PC

 General
 Address: 16 bit
 Data: 8 bit (8085: data multiplexed with addresses A0-A7)

 Abbreviations used
 v 16'0, 16'8, 16'10, 16'18, 16'20, 16'28, 16'30, 16'38
 r8 A B C D E H L
 s8 B C D E H L
 r16 BC DE HL SP
 i8 {BC} {DE} {HL}
 VAL8 8-bit value
 VAL16 16-bit value
 cc EQ NE CS CC MI PL PO PE

 Modifications versus CALM Standard
 8 Bit: All transfers are 8 bits wide, except those determined by

 register names (1 letter = 8 bit, 2 letters = 16 bits).
 Flag v Unspecified 8085 flag: 2's complement overflow (in arithmetic

 8-bit and 16-bit operations). 8080: flag is always 1. (U8085)
 Flag x Unspecified 8085 flag: sign(op1)*sign(op2) + sign(op1)*sign

 (result)(U8085) + sign(op2)*sign(result). For COMP and SUB,
 invert sign(op2). 8080: flag is always 0.

 Remarks
 - flag equalities: EQ=ZS, NE=ZC, CS=LO, CC=HS, MI=NS, PL=NC.
 - Reset: IOFF

JUMP 16'0
 - Interrupt: IOFF

CALL v
 Additional interrupt addresses for 8085: 16'2C, 16'34, 16'3C. (8085)
 - NMI: IOFF (8085)

CALL 16'24
 - CALM - Intel register names: equal except: F=PSW and 16 bit names.
 - CALM - Intel flag names: N=S, Z=Z, H=AC, P=P, C=C.

CALM Assembler PUBBL

 8080/8085 - 2
 Transfer instructions
 MOVE #VAL8 |,A []

VAL16 |
r8 |
i8 |
$VAL8 |
A,| VAL16
 | r8
 | i8
 | $n

 (MVI LDA MOV LDAX IN STA MOV STAX OUT)

 MOVE #VAL8 |,s8 []

s8 |
{HL} |
s8,{HL}

 (MVI MOV MOV)

 MOVE #VAL16,r16 []

VAL16,HL
HL,VAL16
HL,SP

 (LXI LHLD SHLD SPHL)

 MOVE HL,{DE} [] (U8085)

{DE},HL
#{HL}+VAL8,DE
#{SP}+VAL8,DE

 (SHLX LHLX LDHI LDSI)

 PUSH | r16 [], r16 without SP
 POP | AF [], [all] if POP AF
 (PUSH POP)

 SETC [C=1]
 (STC)

 EX DE,HL []

 {SP},HL
 (XCHG XTHL)

 Arithmetic instructions
 ADD | #VAL8 |,A [N,Z,H,P,C]
 ADDC | r8 | [N,Z,H,P,C]
 SUB | {HL} | [N,Z,H,P,C]
 SUBC | [N,Z,H,P,C]
 COMP | [N,Z,H,P,C]
 (ADI ADD ACI ADC SUI SUB SBI SBB CPI CMP)

 ADD r16,HL [C]
 (DAD)

 SUB BC,HL [N,Z,x,H,P,v,C] (U8085)
 (DSUB)

 INC | r8 [N,Z,H,P]
 DEC | {HL} [N,Z,H,P]
 (INR DCR)

 INC | r16 []
 DEC |
 (INX DCX)

CALM Assembler PUBBL

 8080/8085 - 3
 Logical instructions
 AND | #VAL8 |,A [N,Z,H,P,C=0]
 OR | r8 | [N,Z,H,P,C=0]
 XOR | {HL} | [N,Z,H,P,C=0]
 (ANA ANI ORA ORI XRA XRI)

 NOT A []
 NOTC [C]
 (CMA CMC)

 Shift instructions
 RR | A [C = A:#0]
 RRC | [C = A:#0]
 RL | [C = A:#7]
 RLC | [C = A:#7]
 (RRC RAR RLC RAL)

 ASR HL [C = L:#0] (U8085)
 RLC DE [v,C = D:#7] (U8085)
 (ARHL RDEL)

 Program flow instructions
 JUMP,cc | VAL16 []
 JUMP |
 CALL,cc |
 CALL |
 JUMP {HL} []
 JUMP,XC | VAL16 [] (U8085)
 JUMP,XS |
 (J- JMP C- CALL PCHL JNX5 JX5)

 RST v []
 RST,VS 16'40 [] (U8085)
 (RST RSTV) one byte call (restart)

 RET,cc []
 RET []
 WAIT []
 NOP []
 ION []
 IOFF []
 (R- RET HLT NOP EI DI)

 Special instructions
 DAA A [N,Z,H,P,C]
 (DAA) Decimal Adjust A, only valid after ADD and ADDC

 RIM | A [] (8085)
 SIM | RIM: read interrupt mask
 (RIM SIM) SIM: set interrupt mask

 RETEM [all] return from emulation mode (V20)
 (RETEM) POP.16 IP; POP.16 CS; POP.16 SF;

MD bit write disable

 TRAPNATIVE #VAL8 [MD=1] trap to native mode (8086)(V20)
 (CALLN) PUSH.16 SF; PUSH.16 CS; PUSH.16 IP; SET MD;

return with RETI.32
 Notes
 (8085) only available in 8085.
 (U8085) unspecified 8085 flag or operation code.
 (V20) only available in V20, V30, V40, and V50 (8080 emulation mode).
 (c) Patrick Faeh, June 1985.

	What is CALM ?
	What defines CALM ?
	What are the advantages for the user ?
	what are the disadvantages ?
	Examples
	The CALM assembler consists of several programs and files:
	The assembly programs

	Object code without linker
	Object code in the MUFOM format
	Processor documentation
	CALM reference card
	Utility of a CALM reference card
	Structure of a CALM reference card
	Example of a CALM reference card

